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Abstract
The  following
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two  Identities, namely,  for lq|<1,
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are known as celebrated original Rogers-Ramanujan Identity. These
two identities have motivated extensive research over the past
hundred years, The Rogers-Ramanujan Identities has two aspects:
one analytical and the other is combinatorial.

The present paper intends to give a brief discussion on Original
Rogers-Ramanujan Identities and to derive some more identities of
Rogers-Ramanujan Type related to modulo 5, 8 and 12 analytically
by using some general transformation between Basic Hypergeometric
Se(igy =itk dlig) incorporation of some identities from Lucy Slater’s
famous list of 130 identities of Rogers-Ramanujan type.
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Introduction:

For |q<1, the g-shifted factorial is defined by (a; q), = 1

(@ q)y = [TEZ5(1 — ag"), for n>1

and (a; q).. = [Ti=1(1 — ag®).

(an)oo
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g-shifted

It follows that (a; q),, =

The multiple factorial is defined by
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Basic Hyper geometric Series is
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The series P +1(I)p . converges for all positive integers r and

for all x. For r=0 it converges only when |x|<I.

Ramanujan’s Theta function: Ramanujan’s Theta function
([4], P.11, Eq. (1.1.5)) is defined as

f(a, b)=Y2__, ar*D/2pn(=1/2 for |abl<1.

The following special cases of f (a, b) arise so often that they
were given their own notation by Ramanujan ([4], P.11) as

follows:

(@) =f (9.9%)

fo=f(-9,—4*)

Jacobi’s triple product identity :([3], P.2, Eq. (1.1.7))

For |ab| < 1, f (a,b)=(—a, —b, ab; ab),,

An immediate corollary ([3], P-2, Eq. (1.1.8), (1.1.9), (1.1.10))
of this identity is thus
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We now list some general transformations. Most of them can Y A (X 1) (2.4)
n=0 .. —a2 .
be derived as limiting case of transformations between basic @@zner S0
. . ([3], Equation (2.8.9) p.15); (S 3g)
hyper geometric series. Let a, b, ¢, d, y and q €C, |q|<l. Then
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S0t —— =0 @D f(-a?) '
@/b;)n(a:0)n .
R ([3], Equation (2.8.10) p.15); (S 39)
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L @@ ([3], Equation (2.6.2) p.13)
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.2 3. Identities related to modulo 8:
a2 2_ . .
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and Setting b = 1/q and y = g2 in (3.1), we have
(n+1)(_,3.42
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The transformation (1.1) is appeared as (6.1.12) on page 41 in which on some reduction, yields
[3]. The transformation (1.2) follows from (3.5.4) on pages (-4%4%w ww 42" D (=¢%0Dn oo g2
i 3 1 aq : — Zn:o 4.02 —_g6.g4 ano . (32)
77-78 in [5], after replacing ¢ with *?/,, then letting a - 1-o (@%a%)2n(=q%4")n (@D)2n+1
0and finally lettingb — oo. It is also appeared as (6.1.17) on  Now using (2.4) in (3.2) we get the following identity
page 41 in [3]. The transformation (1.3) follows from (1.2)
: . i o (=a%ah a*M D (—q%q%)2n_ f(@97) _ (-9, a".4%4%)
upon lettingd — o, and then replacing c witha. This e 2 om0 = 2 R A
o - -0 20 (q%4Dan(-a%an  F(-a?) (@%a?)
transformation is also appeared as (6.1.18) on page 41 in [3]. En e
The transformation (1.4) follows from a result of Andrews in [
: _(40%(=07:4%x0%4%s _ 0 _1 o 1
6] (see also Corollary 1.2.3 of [7], where it follows after === ,]‘[m=11 — (3.3)
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replacing t by t/ p » then letting b — o and finally replacing t (CaiD-(aia) 1 1
by b). Finally, the transformation (1.5) is appeared as (6.1.21) where n # 1,7 (mod 8) & m % 0 (mod 8)
on page 42 in [3]. Again, placing ql/ 2 in place of q in transformation (1.1),
2. We shall now introduce some identities from the Lucy we have
Slater’s famous list of Rogers-Ramanujan Type Identities.
Each of them below that appears in [3] is designated with a » qn’/zym
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Now, taking g — q* we get
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where n # 3,5 (mod 8) & m # 0 (mod 8)

4. Identities related to modulo 5:
Replacing q by q/? in (1.3), we get
q(3n2—2n)/2(_a2)n

0
Zn:O (q:Q)n(anl/Z)zn
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Setting @ = —q'/? in (4.1), we have, on some simplification,

the following:
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Now taking g = g? in (4.2) and then using (2.2), we obtain
the following identity:
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Hence it reduces to the original Rogers-Ramanujan Identity,
viz,
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Again, Setting a = —q in (4.1), we have
3n2+2n)/2 n2+n)/2
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Now using (2.1) in (4.4) after replacing q by g2, it yields the
following identity
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AG)
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5. Identities related to modulo12:
Placing g2 in place of q in transformation (1.4), we have
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_ (@%6%4%)» 7 (=a:4*)ng™ " (agH"
(-aq%q2) “"=0  (aq%q%4q*)n

(5.1)

Setting a=q in (5.1), it reduces to:
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which reduces to the following identity after some reduction:
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